EXOTIC SYMMETRIC SPACES OF HIGHER LEVEL: SPRINGER CORRESPONDENCE FOR COMPLEX REFLECTION GROUPS
نویسندگان
چکیده
منابع مشابه
An exotic Springer correspondence for symplectic groups
Let G be a complex symplectic group. In [K1], we singled out the nilpotent cone N of some reducible G-module, which we call the (1-) exotic nilpotent cone. In this paper, we study the set of G-orbits of the variety N. It turns out that the variety N gives a variant of the Springer correspondence for Weyl groups of type C, but shares a similar flavor with that of type A case. (I.e. there appears...
متن کاملSpringer Theory for Complex Reflection Groups
Many complex reflection groups behave as though they were the Weyl groups of “nonexistent algebraic groups”: one can associate to them various representation-theoretic structures and carry out calculations that appear to describe the geometry and representation theory of an unknown object. This paper is a survey of a project to understand the geometry of the “unipotent variety” of a complex ref...
متن کاملModular generalized Springer correspondence III: exceptional groups
We complete the construction of the modular generalized Springer correspondence for an arbitrary connected reductive group, with a uniform proof of the disjointness of induction series that avoids the case-by-case arguments for classical groups used in previous papers in the series. We show that the induction series containing the trivial local system on the regular nilpotent orbit is determine...
متن کاملSpin Representations of Weyl Groups and the Springer Correspondence
We give a common framework for the classification of projective spin irreducible representations of a Weyl group, modeled after the Springer correspondence for ordinary representations.
متن کاملHowe Correspondence and Springer Correspondence
Consider real reductive group G, as defined in [Wal88]. Let Π be an irreducible admissible representation of G with the distribution character ΘΠ, [Har51]. Denote by uΠ the lowest term in the asymptotic expansion of ΘΠ, [BV80]. This is a finite linear combination of Fourier transforms of nilpotent coadjoint orbits, uΠ = ∑ O cOμ̂O. As shown by Rossmann, [Ros95], the closure of the union of the ni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transformation Groups
سال: 2015
ISSN: 1083-4362,1531-586X
DOI: 10.1007/s00031-015-9350-9